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A Comparison of Some Taylor and Chebyshev Series 

By R. E. Scraton 

Abstract. A function is approximated in the interval -1 < x < 1 by (i) a Taylor series 
in x; (ii) a Taylor series in y = (x + A)/(1 + Ax); (iii) a Chebyshev series in x; and (iv) a 
Chebyshev series in z = (x + us)/(1 + ux). The convergence of all four series is discussed, 
and a method is given for finding the values of A and u which optimize convergence. 
Methods are also given for transforming one of the above series into another, some of 
which provide effective methods for acceleration of convergence. The application of the 
theory to even and odd functions is also discussed. 

1. Introduction. In this paper we consider the use of the four series given 
below for approximating a function f in the interval -1 < x < 1: 

(1) (i) f(x)=ao+alx+a2x2 + a3x3 + 

(2) (ii) f(x) = bo + bly + b2y2 + b3y3 + ... 

where 

(3) y = x + , JAI < 1, A E R; 

(4) (iii) f(x) = co + clTl(x) + c2T2(x) + c3T3(x) + * 

where Tr(x) = cos(r cos'- x) is the Chebyshev polynomial; and 

(5) (iv) f(x) = do + diTi(z) + d2T2(z) + d3T3(z) + 

where 

(6) Z 1 + +p, IyJ < 1, yE R. 

Note that, contrary to normal practice, the factor 2 has not been included in the 2 

first terms of the Chebyshev series. 
We shall treat x as a complex variable. The region over which we wish to approxi- 

mate f(x), that is the segment of the real axis for which -1 < x < 1, will be denoted 
by L. We assume that f(x) is real for x E L, so that the coefficients ar, b, CT, Cid are 
all real. The singularities of f, which will be denoted by e, e2, e3, ..., are thus 
assumed to be placed symmetrically about the real axis. 

2. Convergence of the Series. From elementary theory, we know that the 
series (i) converges in the region 

(7) lxl < pi, 
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where 

(8) P1 = min{I&jl} . 
i 

Similarly, series (ii) converges in the region 

(9) x + A 
< MN, 

where 

(10) P2(A)=mmin %+A 1} 

Both series may also converge on the boundaries of the regions given, but we shall 
ignore such critical convergence in this paper. It is easily seen that neither series 
can converge in the entire region L unless all the aj lie outside the unit circle. Series 
(ii) has some resemblance to the Euler transformation; the method for optimizing 
its convergence given in the next section may be compared with the method for 
optimizing the Euler transformation, given previously by the present author [1]. 

The value of P2(A) may be taken as a measure of the rate of convergence of 
series (ii) over the region L; the larger the value of this parameter, the more rapid 
the convergence. Thus the optimum value of A will be taken as the value which 
maximizes P2(A). Unless this optimum value is zero, we obtain an improvement in 
convergence by using series (ii) rather than series (i). 

The region of convergence of the Chebyshev series (iii) is the interior of an ellipse 
with foci at +1; more precisely, it is the largest such ellipse for which all the aj 
lie outside or on the ellipse. We can thus guarantee the convergence of series (iii) 
throughout L provided that none of the aj lie on L. In order to define the region 
of convergence algebraically, we introduce a function k given by 

(11) k(x) = x x2-), 

where the sign is chosen so that Ik(x)l > 1 if x ? L and Im{k(x)} > 0 if x E L. 
The region of convergence of series (iii) can then be written as 

(12) lk(x)l| < P3, 

where 

(13) p3 = min{Ik(ej)I}. 
i 

The series (iv) has been discussed previously by the present author [2], and 
subsequently by Locher [3]. Its region of convergence is given by 

(14) |k ( +Hz)|< P4(it), 

where 

(15) p4(p) = min {k aj )| 

We may use p4 (p) as a measure of the rate of convergefnce of series (iv). The 
optimum value of p is the value which maximizes p4 (c), and if this value differs 
from zero the optimal form of series (iv) converges more rapidly than series (iii). 
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3. The Optimum Values of A and p. The determination of the value of 
A which maximizes P2(A) is not a trivial problem. The geometric approach given 
below does not appear to be well known. 

We transform the x-plane into the u-plane by means of the conformal transfor- 
mation 

x -1 1 +u 
(16) u = += i-u 

This transforms the exterior of the unit circle in the x-plane into the half plane 
Re{u} > 0. On the assumption that the ai lie outside the unit circle, their images 
aj defined by 

(17) a j + 
CXj +1 

must lie in the right-hand half of the u-plane. The region of convergence (9) of 
series (ii) maps into the region 

(18) 1 + u < P2(A), 

where 

(19) 1 _ A 

The region (18) is the exterior of a circle of the coaxial system with limiting 
points at ?1. This circle is the smallest circle of the coaxial system for which all 
the aj lie inside or on the circle. Suppose the tangents from the origin 0 to this 
circle are OT, OT'; then we can easily see that 

(20) OT = 

and 

(21) P2(A)=cot [TOT 

These results are true for any value of A; we want to choose A to miaximize P2(A), 
or equivalently to minimize TOT. Thus we have to choose a circle so that all the 
aj lie inside or on the circle, and so that this circle subtends as small an angle as 
possible at the origin. If 1 is the length of the tangent from the origin to this circle, 
then the optimum value of A is given by 

(22) A + 1 + 
The optimum value of p can be obtained in a manner (briefly indicated in [2]) 

which closely parallels the above work. We use the conformal transformation 

(23) 2 = -1 x = 2 
x +1' 2 

This transforms the whole of the x-plane, except for the line segment L, into the 
right-hand half of the v-plane, Re{v} > 0. The singularities aj (which are assumed 
not to lie on L) map into T., where 

(24) 2 =aj -1 Re{T} > 0. 
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The region (14) in which series (iv) converges maps into 

(25) rM+V < P4(i), 

where 

(26) m = 1+'/ m>0. 

We can now proceed exactly as before. We choose a circle such that all the Tj lie 
inside or on the circle, and so that this circle subtends as small an angle as possible 
at the origin. If m is the length of the tangent from the origin to this circle, then 
the optimum value of ,u is given by 

(27) m2 +1 

As an example, consider f(x) = ln(p + qx), where p > Iql > 0. This is given as 
a numerical example in [2] with p = 5.5 and q = 4.5. Formulae for the coefficients 
Cr, cdr in this case are given by Locher [3], but unfortunately are incorrect; correct 
formulae are given below. The singularities of this function are at -p/q, oo, and 
the treatment above shows that the optimum values of A and it are both equal to 
[p - (`p2 -/q2)/q = w, say. The coefficients in series (i)-(iv) are then given by 

1 (q\r 
ao = Inp; ar = 1 -l- () r > 1; r 

1 222r bo = -ln(p2 -q2); br = -WTI r odd; br =0, r even, r > 2; 
2 r 

co ln cIC = 2(_1)T-WT r > 1; 
2w r 

do = -ln(p2 q2); dr=! [ (1 ) r odd; 

d= 0, r even, r > 2. 

In the case p = 5.5, q = 4.5, we can get 12 decimal place accuracy by going as far 
as a117 in series (i), b37 in series (ii), c38 in series (iii), and d19 in series (iv). 

4. Transformation of One Series into Another. Series (i) is the usual 
Taylor series and can be obtained by elementary means. The other three series 
can be obtained quite easily if series (i) is known. In fact, there are a number of 
methods for transforming one of the four series into another, and we summarize 
these below. Insofar as series (ii) and (iv) are generally more rapidly convergent 
than series (i) and (iii), some of these transformations may be regarded as methods 
for accelerating the convergence of series. They may also be regarded as methods 
for analytic continuation, since in many cases the transformed series converges in 
a larger region than the original series. 

Locher [3] has shown that series (iii) can be transformed into series (iv) by a 
transformation which may be written 

(28) dr = EZPr,s (C (s)) 
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where the functions Pr,s are given by 

(29) Po,(0) = (-)8, s > 0, 

(30) Pr,O(W) = O, r > 1, 

(31) Pr,s(() = (Pr-1,s() - Pr,s-1 (() + Pr-1,9-1 (I), r > 1, s > 1. 

By methods similar to those used by Locher, we can transform series (i) into series 
(ii), series (ii) into series (i), and series (iv) into series (iii), thus: 

00 

(32) b= E Pr,8(A)a8, 
8=0 

(33) a= E Pr,s( A)b, 
0= 

(34) Cr( - ) d)s. 

It is easily shown that series (32) and (33) converge if f has no singularities inside 
the unit circle, whilst (28) and (34) converge if there are no singularities on L. 

By making use of the identity 

(35) (2x)8 = Z ( T)l2r-sj(x) 

we can show that 
00 

(36) C= E qr,sar+2si 
8=0 

where 

(37) qo,8s = 22s ()' q, = 2-r-2s+1 (r + 2s) r> 1. 

This enables us to transform series (i) into series (iii). Provided that we choose 
A =,u, we can also take 

00 

(38) dr = Eq,sbr+2S, 
8=0 

thereby transforming series (ii) into series (iv). Series (36) is convergent if f has no 
singularities inside or on the unit circle. If series (i) converges slowly near lxl = 1, 
then series (36) also converges slowly; in this case, it may be better to obtain series 
(iii) by using Eqs. (32), (38), (34) in sequence, rather than by direct use of Eq. 
(36). 

5. Even and Odd Functions. If the singularities of f are symmetrically 
placed about the imaginary axis, the optimum values of A and p are zero, and 
no improvement in convergence is obtained by using series (ii) and (iv) instead of 
series (i) and (iii). This situation most frequently arises when f is an even or an 
odd function; in this case we can make use of the above results by proceeding as 
follows. 
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Let g be an even or odd function with Taylor series 

(39) g(t) = ho + h1t2 + h2t4 + h3t6 + 

or 

(40) g(t) = hot + h1t3 + h2t5 + h3t7 + 

and Chebyshev series 

(41) g(t) = ko + kiT2(t) + k2T4(t) + k3T6(t) + 

or 

(42) g(t) = koT1(t) + kjT3(t) + k2T5(t) + k3T7(t) + 

Define 

(43) f(x) = ho +h (h 2 +h2 (l2+) +h3 (12?)+ 

so that g(t) = f(2t2 - 1) if g is even, or g(t) = tf(2t2 - 1) if g is odd. We can then 
expand f(x) by any of the four series (i)-(iv), and the resulting series can be used 
to evaluate g(t) for -1 < t < 1. 

In particular, series (ii) can be obtained by means of the formula 
00 

(44) b= E irr,s(A)hs, 
s=O 

where 

(45) 7ros(A) =(12 ), s > 0 

(46) Irr,o(A) = 0 r > 1, 

7rr,s (A) = A7rr- i,s (A) + ( 1- A) [irr- 1,s- 1(A) + Irr,s-1(A)], (47) 2 
r > 1, s > 1. 

Series (i) can be computed directly using 
00 

(48) ar = E rr,s (0)hs 
s-=O 

or from series (ii) using Eq. (33). Series (iii) and (iv) can then be obtained using 
Eqs. (36) and/or (38). 

It should be noted that series (iii) is related to the original Chebyshev series (41) 
or (42). In fact kr= cr if g is even, whilst 

1 1 (49) ko=co+-c1; kr= (cr+Cr+i), r>1; 2 ' ~~2 
if g is odd. If series (39) or (40) is slowly convergent, the use of Eqs. (44), (38), 
(34) in sequence can be an efficient means of obtaining the Chebyshev series (41) 
or (42). 

As a final example, consider g(t) = tan-1t. For this function, 

h_ = (- 1)r kr 2(-1) (v', _ 1)2r+1. 
2r+--1' 92r+-1 
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In order to obtain 12 decimal place accuracy, we need to take 1012 terms of series 
(40), or continue as far as the term containing T29(t) in series (42). By using 
series (i)-(iv) obtained as above, we need to go only as far as the terms containing 
a22, b14, c14 and d1o. The optimum values of A and p are both equal to (V'- - 1)2. 

Another approach to even and odd functions is to use the procedure described 
in [2] to optimize the Chebyshev series over the interval 0 < t < 1. Locher [3] gives 
the coefficients for the function tan-' obtained in this way, but again his results 
are in error: the correct formula is 

00 2(-1)r 
V2- 

] lt1 
tanl t =-+ E r+1T2r+l ) 

8 r=O 2r +1 T+i(V2- -1)t +1) 

This last series gives 12 decimal accuracy with terms up to the one containing T15. 
Since, for this particular function, the even terms in the series are zero, this is a 
useful series for tan-It. 
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